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Explorations Unlimited Round-Introduction to Group Theory: Solutions

Q1) Inverse: −q [1 point]
Identity: 0 [1 point]

Q2) Z \ {0} does NOT form a group under addition [1 point]
±1 are the only elements with an inverse/no numbers other than ±1 has an inverse [2 points]

Q3) Q IS an abelian group under addition [1 point]
The center is Q [1 point]
R \ {0} IS an abelian group under multiplication [1 point]
The center is R \ {0} [1 point]

Q4) {1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1} [1 point each]

Q5) (1 5)(2 7 3)(4)(6) [1 point for each correct cycle]
1 7→ 3, 2 7→ 1, 3 7→ 4, 4 7→ 2 [1 point if 2 correct, 2 points if 3 correct, 3 points if all correct]

Q6) (1 2 7 5 6 4 3) [1 point for each correct number, 0 points if does not start with 1]

Q7) (3 4 6 5 7 2 1) (if Q6 is wrong, their answer should reverse the numbers from their Q6 answer) [1 point
for each correct number]

Q8) (1 4 3)(2) [2 points if completely correct, 0 points otherwise]
(1 2 3)(4) [2 points if completely correct, 0 points otherwise]
S4 is NOT abelian [2 points]

Q9) An m-cyle has m possible elements (− − · · ·−). The first space can be anything from {1, . . . , n} (since
we’re in Sn) so there are n possibilities. The second space can be anything other than what was in the first spot,
so there are n − 1 possibilities. We can continue on to the mth spot, where we can choose anything but the
previous m− 1 choices. Hence there are n−m+ 1 possibilities. Therefore, there are n · n− 1 · · ·n−m+ 1 ways
to form an m-cycle. However, two m-cycles are the same if we simply rotate them. Since there are m possible
rotations, there are m possible representations, and so there are n·n−1···n−m+1

m possible m-cycles in Sn [7 points
if the numerator is correct, 3 points if the denominator is correct]

Q10) {i, (1 2 3), (1 3 2)}, {i, (1 2)}, {i, (2 3)}, or {i, (1 3)} are all acceptable answers [4 points if completely cor-
rect, 0 points otherwise]

Q11) 4Z is not empty [1 point if they say it’s not empty]
4x− 4y = 4(x− y) is in 4Z [3 points]
It IS a subgroup [1 point]

Q12) Order is 3 [4 points]

Q13) Order is 2 [2 points]

Q14) (1)(2)(3), (1 2 3), (1 3 2) [1 point for each completely correct answer]

Q15) Since H is a subgroup and subgroups are closed, if a is already in H, then a ◦ h is still in H. So
aH = H/they’re equal/the same [5 points]

Q16) (aH)(n) = (aH) ◦ (aH) ◦ · · · ◦ (aH) = (a ◦ · · · a)H = a(n)H [7 points]

Q17) If h is in H, the function is f(h) = ah [4 points]
If ah1 = ah2, divide by a on both sides to get h1 = h2 [3 points]
Bijections preserve order so the order of H must be the same as the order of aH [4 points]
k = |G|

n = |G|
|H| , so |H| = |G|

k [4 points]
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Q18) By the hint, |x| = |〈x〉| so applying Lagrange’s Theorem to H = 〈x〉, the claim follows [5 points]
From the first part, |G| is a multiple of the order of x. If k is the order of x and |G| = km, then

x(|G|) = x(km) = 1(m) = 1 [5 points]

Q19) Let x be in G be anything but the identity. Then |〈x〉| > 1 and |〈x〉| divides |G|. Since |G| is prime
and |〈x〉| > 1, |〈x〉| = p. Hence G = 〈x〉, which means G is cyclic [10 points]

Q20) Because f is a homomorphism, f(a(n)) = f(a ◦ · · · ◦ a) = f(a) · · · f(a) = (f(a))(n) [5 points]

Q21) Because a ◦ b = b ◦ a and f is a homomorphism, f(a) · f(b) = f(a ◦ b) = f(b ◦ a) = f(b) · f(a) [7
points]

Q22) Because f is a homomorphism, θ((aK)(bK)) = θ((ab)K) = f(ab) = f(a) · f(b) = θ(aK) · θ(bK) [4
points]

If θ(aK) = 1, then f(a) = 1. But then a is in the kernel of f , which we called K. By Q15, this means that
aK = K. So the kernel of θ is K [3 points]

Suppose that f(a) = h. Then θ(aK) = f(a) = h, so the image (range) of θ is H [3 points]


